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Abstract

Let L = (pl, 92’ cens pn) be a list of real numbers in the interval
(0, 1]. The one-dimensional bin packing problem is to place the pi's
into a minimum number of unit-capacity bins. For any algorithm A, let
A(L) denote the number of bins used by A in packing L and let OPT(L)

denote the minimum number of bins needed to pack L. It is shown that,
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for any on-line algorithm 4, Accest
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I. Introduction

Let L = (pl, Pys ee» pn) be a list of real numbers in the interval

(0, 1). The one-dimensional bin packing problem is to place the pi's

into a minimum number of unit-capacity bins; i.e., the sum of the numbers
in each bin can be at most 1. Because this problem is known to be NP-
hard [8], much work has been done in the study of heuristic algorithms
with guaranteed performance bounds [12, 13, 14, 16].

y//’>ﬂng;§£his paper ue—ége concerned with algorithms for which the pieces
(numbers) in list L are available one at a time, and each piece must be
placed in some bin before the next piece is available; such an algorithm
is referred to as on-line {325—13,-16]. The performance measure used is
the ratio of the number of bins used by an algorithm A in packing list
L, A(L), to the optimum (minimum) number of bins required to pack the
list, OPT(L).irg;
Example 1. Consider the list L, = (3/4, 1/6, 1/6, 2/3, 1/4). One possible
packing algorithm is the well known First-Fit (FF) Algorithm [12,13,14],
which places each piece in the first bin which has enough available
space. As shown in Figure la, this algorithm leads to a packing which
uses three bins. An optimal packing requires only two bins (see Figure
1lb). Notice that FF(Ll) = % OPT(LI). )

We are interested, however, in the ratio 6%%%%; for lists L with

many pieces., 1In particular, we wish to determine a lower bound on the
performance ratio

lim { max —AiLl-}.
n=o OPT(L) =n OPT (L)




N e e cin o

e

B i

[ 1)
s .

| ey |
. .

B sime ¥
- a

. [ P

v

» ety

o anascp

';

" VR e el - . i e A
3
| [[777] 7/////
3/4 2/3
76 1/4

a) Packing L1 by the First-Fit Algorithm: FF(Ll) = 3,
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3/4 — 76|
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b) An optimal packing of L1: OPT(LI) = 2,

Figure 1. Packings of L1 from Example 1.
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Exaﬁgle 2, For n even, let the list L2 consist of n pieces of size 3/8

and n pieces of size 5/8. The First~Fit Algorithm uses %? bins, compared

St

to an optimal packing of n bins (see figures 2a and 2b). Thus, we know

B vorams

that, for the First-Fit Algorithm,

- 3
Z_ .

~ FF(LZ) 2 OPT(LZ)
i
i

(In fact, it is known [12,13 ], that there is a list L for which
3 17
‘ FF(L) = 37 OPT(L).) ]
. 10
. We shall show that there is no algorithm which can always use fewer than
: 1.536 OPT (L) number of bins. Thus, for any packing algorithm A,

; ~ lim { max —LLO‘I‘,rI(*L)} > 1.536

3 i n—® QOPT(L)=n

This lower bound is an improvement over the bound of 1.5 proved by
Yao [16].

i On the upper bound side, Yao in [l6] gave an algorithm with a
performance ratio of 5/3, an improvement over the 17/10 of the First-
Fit Algorithm, Brown [4] has an algorithm with a slightly better

. performance ratio of about 1.65.

Much work has recently been done with two-dimensional bin packing.

Various algorithms {1, 2, 3,7, 9] have been proposed, many using ideas

€ srannn

from one-dimensional packing algorithms [12,13,14 ]. Some work on two-
;7 dimensional lower bounds has also been done [5,6, 15]. In particular,
the 1,536 lower bound presented in this paper extends immediately to
two dimensions and gives a 1.536 lower bound for any on-line two-dimen-

sional algorithm which packs pieces in order of decreasing or increasing

» ——

height or increasing width [6].
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a) Packing L2 by the First-Fit Algorithm: FF(LZ) = %?.

b) An optimal packing of L

Figure 2.
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K OPT(LZ) =n,

Packings of L2 from Example 2.
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II. An Example

Yao (16] used a list consisting of pieces of sizes % - 2¢, % + €,

L + € in order to obtain his 3 lower bound for any on-line bin packing

2 2
algorithm. In this section we show that the result can be improved to
l¥§-> 1.535 by considering a list with pieces sized i% - 3¢, % + €,

% + €, % + €. In Section III the method is generalized to a list with

pieces of t different sizes. The work in this section is therefore only
a special case of what will be shown, but it is presented here to
illustrate the method and therefore make the proof of the main theorem

easier to understand. (Also, %%? is not much smaller than 1.536.)
1

Let ¢ be a small positive number, 0 < ¢ < 3423 ° For n a

multiple of 42, consider the list L = L1 L where

) L3 L4,
Ll consists of n pieces of size - 3e,

&=

L2 consists of n pieces of size

+
o

L, consists of n pieces of size

3

L., consists of n pieces of size

Nl—= Wik )~
+ +
(4] o™

4
Noting that

&=

OPT(Ll)

8 s o

OPT(LILZ)

OPT(L1 L

-

2 Lg) =
OPT (L)

we can define the ratios
A(L,)

1 42

1@ T Gra) T a AL,
A(Lle) 6

T, (™) = 5T (L;L,)

=q AL, 2.1)




AL L)L)

r(n)=————=—A(LLL),

3 0PT(L1L2L3) n 17273 1
=A@ 1

0™ = Gery - n AL

We shall prove that

max{rl(n), rz(n); t,(n), ra(n)} P l%?.

Let B denote the set of bins packed by an algorithm A, after the

pieces in Ly L, Ly have been packed. Each bin bweB (1S w< |B]) contains

pieces of size

. ; 1 .
pieces of size = + €, and m pieces

7 3,w

are nonnegative integers,

m - 3¢, m

L
1l,w 42
of size % + €. (Note that m

0= ml,w $42, 0% m2,w 3,w

we shall omit the double subscript and simply write mj when we mean

2,wW

m and m
1w’ 2,w’

<7, 0<m

3,w

< 3.) For notational convenience,

rn.j W We define the set of bins ai(l < i< 3) as follows:

@, = {b_eB|b_is at least half full, m, # 0, and m, = 0 for
i w w i j
1< j<i}.
In other words, a bin bw is in
1 1 1 1
) i ggmtymt3ymy >y and m £ 0
1 1 1
= - > = =
@, if 7 my t3my >3 and m, # 0, m =0
. 1 1
- > - = =
a, if F0 >3 and m, #0, m =m, 0.
Similar, we define Bi(l < i< 3) to be:
Bi = {bweBlbw is less than half full, m, # 0, and my = 0 for

1< j<i}.

Thus, a bin bw is in




L.l .1l 1

Bl if 42m1+7m2+3m3<2and ml#O
1 1 l'. i =

52 if 7m2+3m3<2 and mza‘O,ml 0
1 1 - =

By if Fmy <7 and m, # 0, m =m, = 0.

Letting |cril (|Bi|) represent the number of bins in &, (Bi), we have

aw) = fo| + s
AL Ly = Jog] + 8] + lay| + (8] (2.2)

ALy Ly L) = Jog| + [8)] + [a,] + [8,1 + |og] + |8,

Notice that no two pieces of size L + ¢ will fit in the same bin, nor

2
will any of the n pieces of size %4— ¢ fit in an o, dz, or cx3 bin, so
AL) 2 n + [ozll + la2| + |a3|. (2.3)
Let us assume that
max{r, (), r,(n), r, (@), r, (n)} < X2 (2.4)
1 7 T2 > 73 > T4 71 ° ‘
Combining equations (2.1), (2.2), and (2.3), this tells us
109
I T IR LN
109
g" 1 > ]Q’l' + IB]_l + lazi + |Szl
(2.5)
109
121' 31 7 ]Q']_| + "31! + |°'2| + |52' + la3| + 'B3|
0

109
n°-71—> |a1l+|azl+|a3|+n

Because there are n pieces of size Z]"E - 3e, n of size -;-+ ¢, and n of

size -;- + ¢,
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N

=]

W
a 1

8

b
w

From (2.6), we immediately have

-in.:-i \:— m
42 42 b € B 1
W
1 1 Ay
2 2 b € Bm2
W
-n=-
b € Bm3
W
Suming equations (2.5) and (2.7),
109 1 1 1 4 1
71 n(l',2 tegtst 1) - n(42 + 5+ 1)

> 4lay| + 38| + Ha,| + 2(8,| + 2{ay| + [By] +

s La -}t La- La
€B b €B b ¢B
W W

Simplifying inequality (2.8) and rearranging terms:

- e

(2.6)

2.7)

(2.8)
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(% m +im +m3)>4|a1| + 318, +3la,| + 2|8yl +2[ey] + |B3|

b €B 22
w

S + Z (-é-m +-]‘m + m
€

4 1
Gz tym+o 43 M T3 Wy v mg)

p + 33)

be be €8y

w

+ Z (lm +m,) + z lm + m,) + Z m, +
b € 2 2 3 b eg 22 3 b ea 3 B
w Q1.2 w 2 W 3 w 3

> 4l + 38| +3[e,| + 2|8, + 2|c¢3| + |84l (2.9)

By considering separately each of the summations on the left hand

side, we show that inequality (2.9) gives a contradiction.

1 1 1
- = = <

(a) Forbweal. 42m1+7m2+3m3 1

4 1

42m1+2m2+m3<4

1 1 1 1
(b) Forbweﬂl. 42ml+7m2+3m3<2

4 1

42m1+2m2+m3<2
(¢c) For b eq,: -l-m +-Lm <1

w 2 7 2 373

1
1112+2m3$6+7m2

Since the left hand side 1s an integer, m, + Zm3 =6

-2-m2+ m3$3
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1 1 1
d . - -— -—
(d) Forbweﬁz. Z Wy +3mg <3
1
) m2 + m3 <2
(e) For b eq.,: 1 m, <1
W 3 373
m3 <2
.1 1l
(f) For bwe 63. 3 My < 3
m3 =1

Combining (a) - (£),

T L4 1 4 1
L G m +5m, +m) + E: Gsm +5m +m,)
b ea 42 1 2 2 3 b ep 42 1 2 2 3
w 1 w 1
1
+ z: 7o +m )+ E: (l m, + m,) + Ej m, + E: m
b eu 3 bc-:B22 3 beo:3be53
w2 2 w 3 w 3

< 4lag| + 38 +3la,| + 2|8, + 2[e,] + 8]

This contradicts inequality (2.9). The assumption in (2.4) must be in-

correct, from which we conclude that

A(Ly) A(L,L,) A(L;L,Ly) AQ) 4 . 109
OPT(L,) ’ OPT(L;L,) ’ OPT(L;L,L,) * OPT(L) 71 °

max
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III. The Main Result

Define the sequence of integers {an}, for n =2 1, by

a1 =2
n
a =14+ 1 a,
n+1l . q=1 I
Thus, {an} ={ 2, 3, 7, 43, 1807, 3263443, ...},

and notice that

1 1

-]
11,11
;Ei a, ~2t3tItLtmog e b

i
This sequence has been studied by Golomb [10,11] and it is conjectured
that the closest approximation to 1 from below, which is a sum of k

reciprocal integers, is given by

a—]'-+a%+...+L =1 - 3 1_1,
1 2 3 k+1

for every positive interger k.

In the proof of our lower bound result, we shall make use of the

following simple lemma.

(3.1)
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Lemma. Let {ak} be the sequence of integers defined above in (1). Then,

for 1 = k= j,

j+1 > k
‘ a, ak-l
Proof:
, We first observe that
i
2 ak =z k+1
Then (k + l)ak - (k+1l) = kak
k+1 = k
a, ak-l
o and so, for j 2 k, irl, k_ . |
: a, ak-l

; Motivated by the work in Section 11, we now state and prove our

main result.

Theorem. For any on-line one-dimensional packing algorithm 4,

< i
A(L) - i§=:1 a1
. lim { max OP'I'(L)} z = > 1.5363
( n—® OPT(L)=n 1
. =1 371
Lt Proof:
f i For any positive integer t 2 3, let € be a small fixed number,
0<e< L

|

at(at-l)(t-l) '




| e )

# sivor §
.

IV

1
. Py T 7.1 (t-1)e
‘j t
. and P, = 3 1 + €,
i J t+l-]j
, § for 2 = j = t. Consider the list L = Ll L2 Lt’ where each Li consists
. of n pieces of size pi, for n some multiple of at -1, Then, for
1skst,
n
OPT(L, L, ¢eoe L,) = - (3.2)
172 I"k 3, 1-k 1
* and we can define the ratios
< AL, L, «.s )
r () = —=2 U (3.3)
i OPT(Lle"‘Lk)
- We shall prove that
. max  {r, @} =R, (3.4)
ls kst
where
v _1i
L, a -1
] R, = 1, (3.5)
. t
1
; i=1 ai.-]'
Let B denote the set of bins packed by an algorithm A, after the
l (t ~=1)n pieces in list L1 L2 see Lt -1 have been packed. Each bin bwe B
, ! (1S ys [B|) contains m pieces of size Py for all 1 £ i s t-1, For
. H
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notational convenience, we shall omit the double subscript and simply write

mi when we mean m, . Note that' 0<m, < a

s 5 E+1-4° for 1 < j £ t-1. For
]

j 1< k= t-1l, the set o, is defined to consist of those bins bw € B which are

k
at least half full and in which the smallest piece has size Py - Similarly,

. we define Bk to be the set of bins bw € B which are less than half full and in

which the smallest piece has size Py- So \akl(lﬁkl) represents the number of

&

bins in % (Ek), and, for 1 < k= t-l

Gt

k
= ©
ALy Ly eee Ly) i,;_l(lai[ + |si(). (3.6)

# orme §

Having packed L we note that it will not be possible to

1L2 LI ) Lt_l’
' place any of the remaining n pieces of size P, in any @ bin. So we

also have

t-1

A(L; L, ... L) =0+ i;[ai . (3.7)

IR

i Let us assume that

max {ri(n)} < Rt . (3.8)
1sist

! Making use of equations (3.2), (3.3), (3.6), and (3.7), this assumption

; leads to the following inequalities, for 1 € k< t=~1;

k
n

; — "R > ) (o] + 18]
; feal-k’t O C 121 i i
! (3.9)

T ey
1 ne+*R 2n+ @
| c fa1 &




tad

=,

Because there are n pieces of ‘each size P, we note that

n = E: m
b €B
w

t-k+l

for all k in the range 2 € k < t. Thus,

K . k
S e i ZeB“‘c-ku (3.10)
w

Summing equations (3.9) and (3.10) over k gives

t=1 £
1 k
nR X' - + nR_ - n 2:
t k=1 %e+1-kt t k=2 3!
T Tdegl +lg b eas Slogl - § 25 T
> (el +18.]) +n + a.| - - m__
k=1 4= 1 1 =1 Y m ol b, B ° k+l
From (3.5), we observe that
t
1+ z; {1
R K= %
t t-1 1

1 + PES
k=l “t+l-k

and so inequality (3.11) can be simplified to give

& ATy G vkl >0 7 ) gl 8 o+ e
w k=] i=] i=1

Inequality (3.12) further simplifies to give
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t t-1 '
T _k > ¥V o+l + 3.13
X S;B S o T Mool j};l G+ Dlag sl + 318D (3.13)
w

The remainder of this proof consists of showing that (3.13) gives

a contradiction., In particular, we shall show that

t

k
Yy —m _ s j+1 (3.14)
K= akl t=-k+1

for any bin bweat-j (1< js t=-1) and that

k .
x a -1 “t-k+l = (3.15)

for any bin bw € Bt-j (1= jS t-1)., From this we deduce that the
assumption in (3.8) is incorrect, thereby proving the assertion of
(3.4). The theorem follows immediately.

We first prove assertion (3.14). For bweat_j, then

P ™ + P, M, + ees + Pr1® g < 1 (3.16)

and pt-j m, ; is the first nonzero term. There are two cases.

(1) Assume that j = t -2, Then

j+l
1
i;z a, Beoi+l 1
and
L. .9 L, 1+ ——n (3.17)
aj+1-1 t-] i%‘z a, t-i+l aj+2-1 t-]
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Recalling that mj < a1 j
< L]
mt-j aj+l (3.18)
|
' Also, as a consequence of (3.l),
!
aj+2 - 1= aj+1(aj+1- 1) (3.19)

[ PG

Using (3.18) and (3.19), inequality (3.17) gives

; L, .9 Ly <14+—t (3.20)
: aj+l-1 t-] i&@ a; t-i+l aj+1-l

From (3.1), we note that a, ., -1 is divisible by a,, for all i £ j.

j+1 i’

H Thus, the left hand side of (3.20) is a multiple of Z——LTT , and we

: j+l
have

s b

; 1
) 2. -1 Mt-j T s a—l'mt-i+1 = L.
j+l1 i=2 %4

Thus,

a, .~1 t-j

: J .
_Ji_m + Zz.l.f_l'.mti+lsj+1.
] j+1 =2 %4

Applying the Lemma,

j+1 $ 4
* —m__. + T m__ £ j+1
! aj+l 1 Te-j & 3 1 "t-i+l

|

and we have proved inequality (3.14) for j s t -2,




——

"
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(ii) Assume that j =t-1l; i.e., b €a,. Since p, > for
vl t+l-i
2< i< t-1l, we conclude from (3,16) that
t-1
1 1
[—= - (¢t-Lelm, + Yy = m 1.
a 1 1 i 34 t-i+l
Recalling how we chose ¢,
t-1 m
1 1 1
— m,  + Z—m_. < 1+ =7 (3.21)
a, 11 izo 34 t-i+l at(at 1)

Because my < a_ - 1, the right hand side of (3.21) is less than 1 + L.

t
As in case (i), we also note that the left hand side of (3.21) is a
multiple of L and that L > —1-. Thus,
a -l a -1 a
t t t
t-1
1 1
R T VL WL (3.22)
t i=2 i

Similar to case (i), we multiply both sides of (3.22) by t and apply the

Lemma in order to obtain the desired result:

i
(=2 ai-l mt:-i+l

s t .
We now prove assertion (3.15). For bwe Bt:-j’ then
1
lel + p2m2 + eee + pt_lmt.1 < 7

and m is the first nonzero term. There are two cases.

t-j
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(i) Assume that j s t-2. Then

i+l
1 1
L3 Meeirl C 2 (3.23)
i=2 i
Multiplying both sides of (3.23) by j+2 and then applying the Lemma,
j+l .
i j+2 .
i; a -1 Mmoo+l S T2t (3.24)

For j =2 2, Jﬁ%l = j and the result is proved. For j=1, (3.24) reduces

tom Since mo_1 is an integer, this says m S 1 and once again

3
t-1 < 2°
the desired result holds.

t-1

(ii) Assume that j =t-1; i.e., bwe Bl. Similar to inequality (3.21),

we have

t=l 1 1
M Ot L T e <70t oa (3.25)
t i=2 i t

Multiplying both sides of (3.25) by t and applying the Lemma,

¥ g £, £

i ai-l t-i+l 2 a,
For t = 3,

t t-2

———— < em——————

at 2
and so

;m
{=2 ai-l t-i+l < t=-1

and the theorem is proved. [ |

—
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